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Theory of Thermal Expansion of Composites 1 

P. G. Klemens 2 

The problem discussed is to find the overall thermal expansion of a composite 
consisting of inclusions in a matrix of material with different expansion coef- 
ficients and elastic moduli. The volume mismatch causes strain fields. The total 
strain energy must be a minimum. This problem was solved previously for 
inclusions which are either spheres or randomly oriented long cylinders. In these 
simple cases the matrix strain field consists of a short-range shear component 
and a uniform expansion; the inclusion suffers uniform strain. The matrix is 
replaced by an effective medium having the average properties of the composite. 
The overall expansion coefficient could be obtained in closed form. This 
separation of the strain field into short-range shear and long-range uniform 
dilation is valid, at least to a good approximation, for all inclusion shapes. Sim- 
ple expressions can thus be obtained in terms of coefficients which, although not 
calculated exactly, can be deduced approximately or can be determined 
empirically. Plasticity can be accounted for by allowing the shear modulus te 
depend on the temperature and on the maximum shear strain. The size of the 
inclusions does not enter the theory except through the yield strain, which 
depends on the extent of the strain field. 
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1. I N T R O D U C T I O N  

In  the  case  of  a c o m p o s i t e  ma te r i a l ,  cons i s t ing  of  t w o  sol ids  wi th  di f ferent  

t h e r m a l  e x p a n s i o n  coeff icients ,  a c h a n g e  of  t e m p e r a t u r e  gives rise to  e las t ic  

s t ra ins ,  a n d  the  ove ra l l  t h e r m a l  e x p a n s i o n  coeff ic ient  differs f r o m  a s imple  

v o l u m e  a v e r a g e  of  the  cons t i tuen t s .  T h e  p r o b l e m  of  ca l cu l a t i ng  this ove ra l l  

e x p a n s i o n  is, in genera l ,  a diff icult  one.  I t  has  been  so lved  in s o m e  s imple  
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cases. The present discussion is confined to inclusions of the material in a 
continuous matrix of another. 

A previous paper [ 1 ] treated the cases of inclusions which are spheres 
or long cylinders randomly oriented. In that treatment the total strain 
energy was minimized, and the effect of other inclusions on the strain 
field about one given inclusion was treated by replacing the matrix by an 
effective medium. This requires a knowledge of the strain field for a single 
inclusion in an infinite matrix, given a volume mismatch between the 
inclusion and the matrix material which it replaces. 

Both for a sphere and for an infinite cylinder the strain field of the 
matrix is a combination of a uniform dilation and of a short-range strain 
field of purely shear character. The inclusion is subject to uniform strain. 
For inclusions of other shapes this is no longer exactly true. Nevertheless, 
this decomposition into two components--a long-range dilation and a 
short-range shear--should also hold approximately for other shapes; the 
actual short-range field would have additional components, some of them 
dilational, which should increase the strain energy and also modify the 
connection between the strain of the inclusion and that of the matrix. 
The method of Ref. 1 is here generalized to other shapes, so that an 
approximate formula can be obtained for the overall thermal expansion. 
However, for some of the coefficients in that formula only a lower limit 
will be obtained. Since these coefficients could be found empirically, the 
formula thus obtained may be of some practical use. 

2. STRAIN ENERGY OF INCLUSIONS 

Consider a single inclusion in a matrix, with dimensional mismatch 
between the inclusion and the cavity with the matrix which accommodates 
it; let 7 be the fractional excess of the linear dimension of the inclusion. 
There will be a strain field within the inclusion, with strain energy El,  and 
there will be a uniform dilation of the matrix (strain energy E2) as well as a 
short-range strain field in the matrix surrounding the inclusion (strain 
energy E3). 

Now the cavity which holds the inclusion will be expanded linearly by 
a fractional amount A + fl, while the fractional expansion of the matrix far 
from the inclusion is A, so that fl is a measure of the short-range strain at 
the interface of the inclusion and the matrix. In the case of a sphere or a 
cylinder that strain will be the same everywhere on the interface [1]. For 
less regular shapes that strain will vary somewhat over the interface, and fl 
must be understood to be an average. 

The linear misfit between the original shape of the inclusion and that 
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of the expanded cavity is ( ~ -  A -13), so that the strain energy within the 
inclusion is of the form 

El = K1(7 -- A - 13) 2 (1) 

The long-range expansion of the matrix has strain energy of the form 

E2 = K 2 A  2 (2) 

while the strain energy of the short-range strain field has the form 

E3 = K3fl 2 (3) 

The coefficients K1, K2, and K3 depend on the elastic moduli of matrix 
and inclusion and on the shape of the inclusion. 

Strictly speaking, for an infinite matrix surrounding a single inclusion, 
/s should become infinite, being proportional to the volume of the matrix, 
while A should be inversely proportional to that volume, so that K2 A2 

should be inversely proportional to it and thus tend to zero. The term 
K2A 2 of Eq. (2) and the consideration of A in Eq. (1) are important, 
however, when the inclusion occupies a finite fraction of the total volume 
and the A field plays a role in the stress-free boundary conditions on 
external surfaces, as demanded by the treatment of Eshelby [-2]. 

We thus find it more convenient to consider an infinite matrix 
containing many inclusions, randomly placed, so that c is the fractional 
volume of the inclusions, and we define El,  E2, and E3 to be the respective 
strain energies per unit volume of material. The matrix must now be 
replaced by an effective medium, consisting of matrix (volume fraction 
1 - c) and inclusions (volume fraction c), and the elastic parameters of the 
effective matrix material must be appropriately adjusted. This affects the 
coefficients /s and K 3 but has the advantage that K 2 becomes large and 
finite (K2 -~ �89 where BM is the bulk modulus of the medium), while A, 
K1, and K3 become proportional to c for low values of c. 

The misfit parameter ~ and the volume fraction c of inclusions will be 
taken as given, while 13 and A are unknowns to be determined. Since the 
system adjusts itself so as to minimize the total strain energy 

E = E1 + E2 + E3 (4) 

the conditions of stability become 

OE/OA = -2K~(7 - A - -  f l )  + 2 K 2 A  = 0  

~ E / ~ f l  = -2K1( 7 -- A - fl) + 2K313 = 0 

(5) 

(6) 
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These two equations suffice to determine A and/3 in terms of 7, and one 
obtains 

/3 = ~K~ K2/(K~ K2 + K2 K3 + K3 K1 ) (7) 

and 

A =/3K3/K 2 = 7K3Kx/(K1K2 + K2K 3 + K3K1) (8) 

Note that in the limit of low concentration c, the coefficients K 1 and 
K 3 are both proportional to c, while /s being a property of the matrix, 
tends to a value independent of c. Thus for low concentrations, KIK2 is the 
dominant term in the denominator of Eqs. (7) and (8). Therefore /3 
becomes independent of c, as one would expect since it is a property of 
each individual inclusion, while A, the uniform expansion of the matrix, is 
proportional to the concentration c. 

In the spcial case of spherical inclusions [ 1 ], 

K1 : (9/2) c B  i 

/(2 = (9/2)(1 - c)B~ (9) 

K 3 = 6ClZm 

where Bi and B m a r e  the bulk moduli of inclusions and matrix, respectively, 
and #m us the shear modulus of the matrix. In this case there is no shear in 
the inclusions. 

For nonspherical inclusions K1 and K3 are enhanced, so that/3 is not 
changed very much but A becomes somewhat larger. 

Plastic deformation tends to reduce ]2rn and hence reduces K3. In the 
case of nonspherical shapes, when E1 also contains a shear component, this 
will also reduce K 1 by a small amount. In the case of extreme plasticity K 3 

will tends toward zero, making/3 approach y and making A become small. 

3. VOLUME CHANGE AND THERMAL EXPANSION 

The strain field due to spherical inclusions is composed of two parts: a 
uniform expansion of the matrix, with fractional volume change 3A, and a 
nondilational component which transmits the change in volume of the 
cavities to the external surfaces. The fractional change in volume of each 
cavity is 3/3, and since c is the fractional volume occupied by cavities, the 
overall change in volume becomes 

6 V / V =  3A + 3ep (10) 
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For nonspherical inclusions, this division still holds approximately: 
although there may be dilations due to the short-range field at some 
locations near the inclusion, they would be compensated by negative 
dilations at other places, and Eq. (10) would still hold. The only difference 
likely to arise is that the effective value of fl may change: this is equivalent 
to a change in K3. Therefore the fractional change in volume, from 
Eqs, (10), (7), and (8), is 

3V/V=3y(c+K3/K2)KIK2 / (K1K2+K2K3+K3K1)  (11) 

Note that K1 and K 3 both vary as c, while Kz oc ( 1 -  c), so that c + KJKz  
varies approximately as c, and 6V/V  varies as c for low values of c. 

Now 7 is a function of temperature if the two materials have different 
expansion coefficients. When the volume fraction of inclusions is small, 

3dT/dT= ~ i -  (Xm (12) 

where ai and am are the volume coefficients of thermal expansion of 
inclusion and matrix material, respectively. The net coefficient of thermal 
expansion becomes 

O~ = O~ m -]- V 1 d fV /dT  (13) 

where the second term is given by Eqs. (11) and (12), and K1,/(2, and K3 
are temperature independent. 

If the concentration of inclusions is finite, the net expansion of the 
matrix is no longer cx m but e, replacing the matrix by an effective medium 
consisting of the matrix and all other inclusions. Thus Eq. (12) should be 
replaced by 

3dT/dT= ~ i -  c~ (14) 

and this should be used in Eq. (11) to obtain the term V - l d b V / d T  of 
Eq. (13). Thus 

0r = 0{ m + ({X i - -  O~ )(C "~ K3/K 2 ) K 1 K 2 / ( K  1 K 2 + K 2 K 3 + K 3 K1 ) 

= ~X m -{- (CX i - -  ~ )  cF (15) 

where 

F =  (1 + K3/cK2)KIK2/(KIK 2 + K2K 3 + K3Kt) 

With F thus defined, one obtains from Eq. (15) 

= (a m + cF~i)/(1 + cF) 

(16) 

(17) 
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4. COMPARISON WITH THE V O L U M E  MIXING RULE 

One can compare the expansion coefficient expressed by Eq. (17) with 
the simple mixing rule which weighs components by their volume fraction: 

oY = c~i + (1 - c ) ~  m ( 1 8 )  

Equation (17) can be brought into the form of Eq. (18) if the volume 
fraction c is replaced by an effective concentration 

c ' :  cF/(1 + cF) (19) 

where F, given by Eq. (16), is itself dependent on c. 
For low c, F =  (1 +K3/cK2)/(1 +K3/K1), and frequently, but not 

always, F >  1. As c increases, F decreases because the term K3KI gains 
relative importance. Thus c' > e for low c and c' < c for higher values of c, 
with a crossover c ' =  c when c =  ( F - 1 ) / F .  Thus in general Eq. (18) places 
greater weight on the inclusions than Eq. (18) would when c is small. For 
large values of c, F <  1 and c' will be less than e, so that Eq.(18) 
overestimates the effect of the inclusions. However the departure from 
Eq. (18) is usually small. 

In the case of spherical inclusions 

F =  (1 -q- 4#m/3Bm)/(1 -q- 4,Um/3Bi) (20) 

so that F departs only slightly from unity and departures from Eq. (18) are 
small. 

5. PLASTIC FLOW IN THE MATRIX 

For each increment in temperature there is a corresponding increment 
in the misfit parameter ~ and a corresponding increase in/~, the maximum 
strain in the matrix. Since the major contribution to E 3 comes from the 
region at the interface, where the strain is largest, one can approximately 
treat the parameter/~ as a measure of the short-range shear strain. 

Now the shear modulus ~m which enters K3 must be considered to be 
an incremental modulus, related to the slope of the stress-strain curve. 
With increasing shear strain and temperature, this incremental modulus 
tends to decrease, and correspondingly K 3 will decrease and F will tend 
toward a value of 1. 

The present treatment appears to be independent of the size of the 
inclusions. This is so in the elastic regime. In the plastic regime, however, it 
must be remembered that ~m depends also on the linear extent of the shear 
strain field. Unless the strain field includes preexisting dislocations, the 
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microscopic yield stress will be much larger than that measured on large 
samples. Thus the plastic flow in the matrix about an inclusion will be 
inhibited if the inclusions are less than a micrometer in size, since in soft 
metals the density of dislocations is no more than 10 8 cm 2 
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